
OCCI-compliant Occopus
orchestrator and experiences with

using it with the EGI Federated Cloud

Jozsef Kovacs and Peter Kacsuk

MTA SZTAKI

Motivations for Occopus – End user view

• There are many use cases where the goal is to set up a
complete infrastructure or a set of services (called as virtual
infrastructures) on demand in the cloud

• Goal is to enable end-user scientists to easily (ideally by 1 click)
deploy such a VI in the cloud either temporarily or for a longer
period of time

• Example:
o biologist would like to run autodock in-silico simulation between one

receptor molecule and 100.000 ligand molecules

o The biologist takes the autodock VI from EGI AppDB and by 1 click
deploys it in a target cloud and uses it

Motivations for Occopus – VI developer view

• Enable virtual infrastructure developers to develop
the required VIs and VI descriptors for various cloud
types

• Requirements:

o Easy and fast development of VIs without very deep cloud
expertise

o Easy specification/description of the required VI

o Fast and automatic deployment of the VI specified by the VI
developer

o Fault-tolerant life-cycle management of deployed virtual
machines

o Cloud type independent solution

Example: Creating docker cluster in cloud

EGI
AppDB

VI descriptor

Step 1: Take VI descriptor of

docker cluster VI from EGI

AppDB

Step 2: Deploy docker cluster VI by 1

click in EGI Cloud

Docker
Head

Docker Worker

Docker Worker

O
C
C
I

Step 3: Deploy docker containers

in the docker cluster

Main features of Occopus

• Command line tool and REST API service

• Multi-cloud support

• Pluggable architecture → e.g. connecting to a new
cloud requires only a new plugin

• Error-detection (fatal/transient) and recovery

• Support for configuration management tools (like Chef)

• Garbage collection at VM cancellation

• Manual scaling

• Serial and parallel synchronization strategies among
nodes of a VI

How does Occopus work?

• At deployment time the dependencies among nodes are managed

• Required communication among nodes are handled to enable their
interaction and collaboration

• If Occopus works as a service it manages the whole life-cycle of the
nodes

A

B C

[B, A]

[C, A]
A

B C parallel

A

B C

[B, A]

[C, A]

[B, C]

A

B

C

parallel

sequential

VI dependency
graph

VI dependency
descript or

Deployment order

How to describe your infrastructure

• Occopus requires 2 descriptions:
o Virtual infrastructure description:

• Specifies the nodes (services) to be deployed and all cloud-
independent attributes e.g. input values for a service.

• Specifies the dependencies among the nodes, to decide the order of
deployment

• Specifies scaling related attributes like min, max number of
instances

o Node definition:
• Defines how to construct the node on a target cloud. This contains

all cloud dependent settings, e.g. image id, flavour,
contextualization (complete: could be deployed as a 1-node VI)

• See detailed tutorials at the Occopus web page:
o http://occopus.lpds.sztaki.hu/tutorials

http://occopus.lpds.sztaki.hu/tutorials

Infrastructure description in Occopus

nodes:

- &DBS_Node

name: mysql_server

type:

ec2_chef_mysql_server_node

- &WP_Node

name: wordpress

type: ec2_chef_wordpress_node

dependencies:

-

connection: [*WP_Node,

*DBS_Node]

Infrastructure description:List of nodes

Type refers to an
implementation in node

definition

Dependencies specifies
the required order of

deployment

'node_def:ec2_chef_mysql_server_node':

-

resource:
type: ec2

endpoint: http://cfe2.lpds.sztaki.hu:4567

regionname: ROOT

image_id: ami-00001441

instance_type: m1.medium

contextualisation:
type: cloudinit

context_template: !text_import

url: file://cloud_init_wordpress.yaml

attributes:

mysql:

server_root_password: '{{ variables.mysql_root_password }}'

config_management:
type: chef

endpoint: https://c155-14.localcloud

run_list:

- recipe[database-setup::db]

health_check:
mysqldbs:

- {name: my_DB,

user: my_user,

pass: '{{ variables.mysql_dbuser_password }}'}

Node definition in Occopus

Node definition:
‘resource’ section

obligatory : details the
attributes needed for

instantiation of a node

‘contextualization’ section specifies
cloud-init config file and

attributes for chef recepies

‘config_management’ section specifies
chef server and recepiesto run

‘health_check’ section
specifies how to check

node health

OCCI support

OCCIOccopus

OCCI

A

B C

EGI

FedCloud

• Occopus can handle OCCI cloud interface to utilize EGI
FedCloud resources

• Nodes of deployable infrastructure are instantiated on
the target cloud through OCCI and used Cloud-init for
contextualisation.

A

B C

VI Descriptor

Can run on your

desktop or as a

service

Multi cloud setups in EGI FedCloud

OCCI
Occopus

OCCI

A

OCCI

OCCI

B

OCCI

OCCI

C

EGI FedCloud

e.g.: CESNET

EGI FedCloud

e.g.: IFCA

EGI FedCloud

e.g.: BIFI

• Occopus can utilise multiple
clouds in a federation like
EGI FedCloud

• Nodes of deployable VI are
instantiated on different
FedCloud sites

• Connection is based on
public ips

A

B C

VI Descriptor

Pluggable Occopus architecture

Occopus

EC2

Contextualisation
Resource
(handlers)

Config
managers

NOVA

CloudBroker

ChefCloudinit

CloudBroker

Docker

Health
Checking

Ping

Port

Url

Mysql

OCCI

Docker

OCCI resource attributes in Occopus

type: occi
Selects the occi resource handler. It requires the occi client to be installed locally.

endpoint
Occi site endpoint.

resource_tpl
Template ID.

os_tpl
OCCI ID.

public_key
Optional. The public ssh key to be deployed on the target virtual machine.

link
Optional. List of compute or network resources to be attached to the VM. Using this option

enables one to attach additional disk images or public networks to the VM.

name
Optional. A user-defined name for this resource. Used in logging and can be referred to in

the authorisation file.

Taken from AppDB

Docker/Swarm cluster in EGI Fedcloud

Occopus

OCCI
H

W

W

EGI

FedCloud: CESNET

• In this example, we create a swarm/docker head (H)
node and two swarm/docker worker (W) nodes in the
CESNET EGI FedCloud.

H

W W

VI Descriptor

O
C
C
I

Inside the Docker cluster nodes

'node_def:occi_dockerswarm_head_node':

-

resource:

type: occi

endpoint: https://carach5.ics.muni.cz:11443

os_tpl: os_tpl#uuid_egi_ubuntu_server_14_04_lts_fedcloud_warg_131

resource_tpl: http://fedcloud.egi.eu/occi/compute/flavour/1.0#medium

link:

-

https://carach5.ics.muni.cz:11443/network/24

public_key: /home/myaccount/.ssh/authorized_keys

contextualisation:

type: cloudinit

context_template: !text_import

url: file://cloud_init_head_node.yaml

health_check:

ports:

- 2375

Creating a Docker Swarm cluster

nodes:

- &H

name: head

type: occi_dockerswarm_head_node

- &W

name: worker

type: occi_dockerswarm_worker_node

scaling:

min: 2

dependencies:

- [*W, *H]

Infrastructure description:

Node definition for the head node:

OCCI IDs for a
base Ubuntu

image

Attach a network
to get a public IP

Add public sshkey
Cloud init script
to setup Swarm

Head nodeReady when Swarm
port is available

Require 1 head and any (currently 2)
number of worker nodes

Scaling min parameter is 2 means 2
instances will be deployed at startup

Workers started after head

Creating a Docker Swarm cluster

nodes:

- &H

name: head

type:

occi_dockerswarm_head_node

- &W

name: worker

type:

occi_dockerswarm_worker_node

scaling:

min: 2

dependencies:

- [*W, *H]

Infrastructure description:

Require 1 head and any (currently 2)
number of worker nodes

Scaling min parameter is 2 means 2
instances will be deployed at startup

Workers started after head

'node_def:occi_dockerswarm_head_node':

-

resource:

type: occi

endpoint: https://carach5.ics.muni.cz:11443

os_tpl:

os_tpl#uuid_egi_ubuntu_server_14_04_lts_fedcloud_warg_131

resource_tpl:

http://fedcloud.egi.eu/occi/compute/flavour/1.0#medium

link:

- https://carach5.ics.muni.cz:11443/network/24

public_key: /home/myaccount/.ssh/authorized_keys

contextualisation:

type: cloudinit

context_template: !text_import

url: file://cloud_init_head_node.yaml

health_check:

ports:

- 2375

Creating a Docker Swarm cluster

Node definition for the head node:

OCCI IDs for a
base Ubuntu

image

Attach a
network to get

a public IP

Add public sshkey

Cloud init script
to setup Swarm

Head node

Ready when Swarm
port is available

Usage of the docker cluster

The resulted docker cluster

o Dynamically scaled up or down with Occopus

o Docker containers can be started
• by docker commands

• by Occopus (which can start containers by its docker plugin)

Occopus

OCCI

Docker
Head

Docker Worker

Docker Worker

O
C
C
I

Deploy

Docker

Occopus

Docker

Deploy

Containers

'node_def:docker_ping_sender_node':

-

resource:

type: docker

endpoint: tcp://192.168.153.52:2375

origin: https://s3.lpds.sztaki.hu/docker/busybox_ping.tar

image: busybox_ping

network_mode: overlaynet

tag: latest

contextualisation:

type: docker

env: ["target_ip={{getip(\"ping_receiver\")}}"]

command: "sh -c /root/start.sh"

health_check:

ping: False

Example: Docker ping

nodes:

- &R

name: ping_receiver

type: docker_ping_receiver_node

variables:

message: "Hello World! I am the

receiver node."

- &S

name: ping_sender

type: docker_ping_sender_node

dependencies:

- [*S, *R]

Infrastructure description:

Node definition for the sender node:

Builds 1 receiver and 1 sender

Sender starts after Receiver

Attributes of previously built
docker/swarm cluster and the
container to be instantiated

Docker contextualization
specifies command and
environment variables

Docker container is not
accessible from outside

(in this example)

d4science community experience with Occopus v.0.3.0

Nunzio Andrea Galante from d4science:

• “As far as the OCCI experimentation concerns, we
have tested the functionalities proposed by Occopus.

• Indeed now we can
o authenticate to the FedCloud VO,

o create infra/VMs on OCCI-based sites,

o specify properties (e.g.,os templates, resource templates).

• By using the context script then, we are actually able
to monitor the instances on d4Science infrastructure.”

Current state of Occopus

• Open-source (License: Apache v2)
• 3 beta releases previously
• Now: Release v1.0 (first production release)
• Python 2.7
• Base webpage: http://occopus.lpds.sztaki.hu
• Git: https://github.com/occopus
• Documentation:

o Users’ Guide
o Developers’ Guide
o Tutorials

• Testing: Python nosetests
• Deployment: setuptools

o Package repository: http://pip.lpds.sztaki.hu/packages

http://occopus.lpds.sztaki.hu/
https://github.com/occopus
http://c153-86.localcloud:8080/packages

